Kinetics of MHC-CD8 interaction at the T cell membrane.

Author: Jun Huang

Date: 2/5/2008

Journal:Journal of immunology (Baltimore, Md. : 1950)




CD8 plays an important role in facilitating TCR-MHC interaction, promoting Ag recognition, and initiating T cell activation. MHC-CD8 binding kinetics have been measured in three dimensions by surface plasmon resonance technique using purified molecules. However, CD8 is a membrane-anchored, signaling kinase-linked, and TCR-associated molecule whose function depends on the cell membrane environment. Purified molecules lack their linkage to the membrane, which precludes interactions with other structures of the cell as well as signaling. Furthermore, three-dimensional binding in the fluid phase is biologically and physically distinct from two-dimensional binding across apposing cell membranes. As a first step toward characterizing the molecular interactions between T cells and APCs, we used a micropipette adhesion frequency assay to measure the adhesion kinetics of single mouse T cells interacting with single human RBCs coated with MHC. Using anti-TCR mAb we isolated and characterized the specific two-dimensional MHC-CD8 binding from the trimolecular TCR-MHC-CD8 interaction. The TCR-independent MHC-CD8 interaction has a very low affinity that depends on the MHC alleles, but not on the peptide complexed to the MHC and whether CD8 is an alphaalpha homodimer or an alphabeta heterodimer. Surprisingly, MHC-CD8 binding affinity varies with T cells from different TCR transgenic mice and these affinity differences were abolished by treatment with cholesterol oxidase to disrupt membrane rafts. These data highlight the relevance and importance of two-dimensional analysis of T cells and APCs and indicate that membrane rafts play an important role in modulating the affinity of cell-cell interactions.