Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals.

Author: Lining Ju

Date: 7/19/2016



DOI: 10.7554/eLife.15447



How cells sense their mechanical environment and transduce forces into biochemical signals is a crucial yet unresolved question in mechanobiology. Platelets use receptor glycoprotein Ib (GPIb), specifically its α subunit (GPIbα), to signal as they tether and translocate on von Willebrand factor (VWF) of injured arterial surfaces against blood flow. Force slows VWF-GPIbα dissociation (catch bond) and unfolds the GPIbα leucine-rich repeat domain (LRRD) and juxtamembrane mechanosensitive domain (MSD). How these mechanical processes trigger biochemical signals remains unknown. Here we analyze these extracellular events and the resulting intracellular Ca(2+) on a single platelet in real time, revealing that LRRD unfolding intensifies the Ca(2+) signal analogously whereas MSD unfolding determines the Ca(2+) type digitally. The >30nm macroglycopeptide separating the two domains transmits VWF-GPIbα bond lifetime prolonged by LRRD unfolding to enhance MSD unfolding cooperatively at an optimal force, which may serve as a design principle for a generic mechanosensory machine.