A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force.

Author: Florencia Rosetti

Date: 3/11/2015

Journal:Cell reports


DOI: 10.1016/j.celrep.2015.02.037

Link: http://www.ncbi.nlm.nih.gov/pubmed/25772353


Leukocyte CD18 integrins increase their affinity for ligand by transmitting allosteric signals to and from their ligand-binding αI domain. Mechanical forces induce allosteric changes that paradoxically slow dissociation by increasing the integrin/ligand bond lifetimes, referred to as catch bonds. Mac-1 formed catch bonds with its ligands. However, a Mac-1 gene (ITGAM) coding variant (rs1143679, R77H), which is located in the β-propeller domain and is significantly associated with systemic lupus erythematosus risk, exhibits a marked impairment in 2D ligand affinity and affinity maturation under mechanical force. Targeted mutations and activating antibodies reveal that the failure in Mac-1 R77H allostery is rescued by induction of cytoplasmic tail separation and full integrin extension. These findings demonstrate roles for R77, and the β-propeller in which it resides, in force-induced allostery relay and integrin bond stabilization. Defects in these processes may have pathological consequences, as the Mac-1 R77H variant is associated with increased susceptibility to lupus.